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Properties of an Exact Crystalline 
Many-Body Ground State 

P. J.  Forres ter  ~ 

Received May 18, 1993 

A new quantum many-body Hamiltonian is introduced, for which the exact 
ground state is a Jastrow-type product. This Hamiltonian is interpreted as a 
one-component ]xl-potential Coulomb system in free boundary conditions, and 
by explicit calculation it is shown that the ground state is crystalline. The 
general n-body density matrix is calculated, and is related to the n-body density 
matrix calculated in periodic boundary conditions. 

KEY WORDS:  Wigner solid; Jastrow-type wave function; correlation func- 
tions. 

1. INTRODUCTION 

1.1. Objective of the Paper 

The Wigner  t ransi t ion refers to the freezing of the quan tum mechanical  
one-component  p lasma (positive ions immersed in an inert neutral izing 
background) .  In two and three dimensions ( - l o g r  and 1It potential ,  
respectively), at large values of the dimensionless  coupl ing character izing 
the rat io  of the potent ia l  to the kinetic energy, the ions become localized 
a round  the classical equi l ibr ium points  which form the Wigner  lattice, t~ 
However,  in one dimension (Ixl potent ia l )  the ground state is always 
crystalline, t2~ 

Al though there is no phase t ransi t ion in the one-dimensional  system, 
it does have the notewor thy  feature of al lowing an exact evaluat ion of the 
ground-s ta te  wave function when an addi t ional  certain shor t - range pair  
potent ia l  is imposed and the part icles are spinless fermions, t3~ Our  objective 
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in this paper is to explore further this exact crystalline state by providing 
the analogous exact solution for the system in free boundary conditions 
(the calculation of ref. 3 was done in periodic boundary conditions), and 
relating the density matrices in each case. 

Regarding this latter point, from the work of Choquard and Kunz t4"5) 
on the classical one-dimensional one-component plasma we know that the 
distribution functions for a crystalline state in free (f) and periodic (p) 
boundary conditions are related by averaging the former over a period of 
oscillation (a say). Thus, 

(p) _ 1 d~ .(r)t,- - ~ , , ~ . 1 + r  ..... x , , + ~ )  P,, (x] ..... x , ) -  a (1.1) 

For the quantum system, we will show that (1.1) remains valid, being a 
special case of an analogous relationship between the density matrices of 
each system, 

p ( p ) t  ~ . ~ 1  . . . . .  x .  l x l  . . . . .  x ' )  

1 d~ ,~(tl, , = -  v,, t x , + ~  ..... x , + ~ l x i + r  (1.2) 
a 

1 .2 .  F u r t h e r  I m p l i c a t i o n s  

We will evaluate the general n-body density matrix for the state 

= exp - 2j~-=, ,~j<k_~vI~ sinh [~t(Xk -- Xj)] (1.3) 

It is interesting to note that there are other physical problems in which the 
probability density function (1.3) occurs and for which the calculation of 
the density matrix (in the special case of it being a distribution function) 
is relevant. 

With a =  1/Dt and ct= d/Dt we have previously observed (61 that (1.3) 
satisfies the n-dimensional heat equation 

2 O  

J ' ~ l  " "J 

subject to the initial condition 

N 

Oo(x, ..... xu) ~ 1-I 5 ( x j - d ( j - [ ( N + l ) / 2 ] ) )  as t ~ 0  (1.5) 
j = t  
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and boundary condition 

~,o=0 whenever x j = x /  ( j v L j ' )  (1.6) 

It thus follows that q'o is the probability density function for the event that 
N random walkers, initially equally spaced (spacing d) symmetrically 
about the origin, will arrive at the points x~ ..... x~ without their paths 
crossing [this interpretation of (1.3) was first given in ref. 7]. With this 
interpretation, the n-particle distribution function for the state @o is 
proportional to the conditional probability that n of the N random walkers 
will arrive at the points x~,. . . ,  x,,  in time t, given that after time 2t each 
walker has returned to its initial position. 

We have also noted (6~ that I~bo] 2 is proportional to the Boltzmann 
factor of a classical log-potential Coulomb gas system, consisting of one 
species of mobile charge on a line with periodic boundary conditions, 
period x/ct, perpendicular to the line. This follows since 

~b(x) = - log  Isinh ctxl (1.7) 

is the pair potential between mobile particles in such a system, while the 
potential energy of the particle-background interaction, for a suitable value 
of c(, gives the Gaussian in (1.3). 

A further interpretation of (1.3) follows from the form given in (3.4) 
below: 

1 f i  e-"21~ I-[ ("]'k--~'j) ' ~.j>~O (1.8) 
k = l  ~ j <  N 

which results from a change of variables in (1.3). We see that Iffol 2 can be 
interpreted as the eigenvalue density function of a generalized ensemble of 
Gaussian Hermitian matrices. ~8~ 

2. T H E  H A M I L T O N I A N  A N D  ITS EXACT W A V E  F U N C T I O N  

2.1. Solution of the Schr6dinger Equation 

We have the following result: 

Theorem 1. Let 

z _ 2otab 
0 2 N 

J 

p = l  p = l  

+ 2(x2b(b - 1 ) 

(Xk - -  ~ )  coth ~(xk -- ~ )  
I ~ j < k ~ N  

1 
sinh z ~(Xk  - -  ~ )  (2.1) 

l ~ j < k ~ N  
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and 

1 ( a N 3 (  )b ~//o.b = ~- '~, exp -- x~ ]--I sinh[ot(xj,-xj)] (2.2) 

where the ordering xl < x2 < --- < x,v is assumed (for other  orderings ~bo. a 
may  change sign depending on the particle type, boson or fermion). Then 
ffo.b satisfies the Schr6dinger equat ion 

H~k o, h = Eo ~k o.a (2.3) 

with 

Eo = -�89 1 ) ( N -  2) + aN-- uZbZN(N- 1 ) (2.4) 

R e m a r k s .  (i) The same Hamil tonian  in which the one-body har- 
monic well is replaced by a pairwise harmonic  at tract ion between particles 
has been considered by Calegero)  9~ 

(ii) Reference 10 claims to provide an exhaustive list of Hamil tonians  
with one- and two-body potentials which have wave functions of the same 
structure as (2.2). However,  (2.1) does not appear  on the list. 

Theorem 1 can be verified by a direct computa t ion  of the r.h.s, of (2.3). 
The apparent  three-body terms which result reduce to a constant  because 
of the identity 

coth a coth b + coth a coth c + coth b coth c = - 1 (2.5a) 

for 

a + b + c=O (2.5b) 

2.2.  

potential  energy in (2.1) has a Coulombic  
decompose the potential  energy V as 

where 

Plasma In terpre ta t ion  

In this subsection we will show that  the long-range (lr) port ion of the 
origin. For  this purpose we 

N 

V,r=a 2 ~, Xp--2 2~ab • Ixk--xjl (2.6b) 
p = l  l<~j<k<~N 

V= V~ + Vs~ (2.6a) 
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and 

V,r = -4~ab ~ Ix,,, - xjl 
1 <~j<k<~ N e2~' I x k -  xjl _ 1 

1 
+ 2ctZb(b - 1 ) ~ sinh z o:(x,,, - xj) (2.6c) 

l<<.j<k<~N 

To relate Vu to the potential energy of a Coulomb system, recall that 
the one-dimensional Coulomb potential between a charge of strength Q at 
x and a charge of strength Q' at x' is 

~b(lx- x'[) = - Q Q '  I x -  x'l (2.7) 

One-component Coulomb systems require a neutralizing background for 
thermodynamic stability. Thus suppose that in the interval [ - L / 2 ,  L/2] 
there is a background of charge density - QN/L := -Qr/. A short calcula- 
tion gives that the electrostatic energy of the particle-particle, particle- 
background, and background-background interactions is 

N 

V , r = - 0  2 ~ I x k - x j l + a 2 q  ~_, x ~ + ~ a z N 2 t  (2.8) 
l<~j<k<~N j ~ l  

The derivation of (2.8) assumes that x j ~ [ - L / 2 ,  L/2]. When the 
particles lie outside this interval the one-body potential is linear rather than 
quadratic in xj. However, we must retain the quadratic potential for all 
xj~ R in the quantum Hamiltonian. This approximation should not affect 
the value of bulk quantities in the thermodynamic limit. 

By comparing (2.6b) and (2.8) we see that if 

then 

2o~ab = Q2 and a z = qQ2 (2.9) 

V,,. = Ve - ~Q2N2L (2.10) 

Hence from (2.6a) and (2.4) the ground-state energy E~ of the Hamiltonian 
with potential energy 

re+ Vsr (2.11) 

is given by 

(2.12) 
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Note that this is extensive. It agrees with the analogous result for the 
system in periodic boundary conditions [ref. 3, Eq. (21) with the identifica- 
tions 7 = 4rc2/Q 2 and d =  r/]. 

3. THE EXACT n - B O D Y  DENSITY M A T R I X  

3.1. Wave Function in Terms of St ie l t jes-Wigert  Polynomials 

For the remainder of the paper we will consider the case b = 1, when 
~'o,b reduces to if0 as given by (1.3). From (2.9) and (2.6b) we see that this 
does not affect the generality of the Coulomb portion of the Hamiltonian 
(2.1). The only effect is on the short-range part (2.6c)--the 1/sinh 2 ar pair 
potential is not present in this case. 

The significance of the choice b = 1 is that the corresponding wave 
function (1.3) can be expressed as a Slater determinant of orthogonal func- 
tions, which allows an explicit calculation of the n-body density matrix. 
The orthogonal functions are formed by the product of the log-normal 
distribution and the Stieltjes-Wigert polynomials. 

The Stieltjes-Wigert polynomials, to be denoted St(y; q), are polyno- 
mials of order / in a variable y, say, and also depend on a parameter q. 
Explicitly c~ 1 

(-l)tql/2+l/4 -- I 1 {(l_q)_(i___~_~]]]_(_f_qt)}t/2~ 1 q,.2(_q~/2y)~ (3.1) 
v = 0  V q 

St(y; q)= 

where 

denotes the Gaussian polynomial (see, e.g., ref. 12). The Stieltjes-Wigert 
polynomials have the orthonormality property 

fo~ W(y; Sin(y; q) dy = (3.2a) q) s,,(y; q) 

where 

w(y; q) = ~- l/2ke -k'- 1o,2 y and q = e -  i/~2k2~ (3.2b) 

To rewrite the wave function (1.3) we make the change of variables 

yj = e2=lxi + =rc/al (3.3) 
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After  ad ju s t i ng  the  n o r m a l i z a t i o n  CN this gives 

,fl IP o = ~-'-~N [2aykw(Yk; e-2=z/")] t/2 I-[ 
k = '  ' < ~ j < k < < . N  

(Yk --  Yi) (3.4) 

N o w ,  f rom the van  der  M o n d e  d e t e r m i n a n t  expans ion ,  

l--[ ( y ,  - yj)  = det  [y~  - l ] j ,k = ,..... u 
, < ~ j < k < ~ N  

(3.5) 

By a d d i n g  an  a p p r o p r i a t e  mul t ip le  of  c o l u m n  1, 2 ..... k -  1 to  c o l u m n  k for 
each c o l u m n  N, N - 1  ..... 1 successively,  we see tha t  up  to a mul t ip l i ca t ive  
cons t an t  this  can  be rewr i t t en  as 

,9 --  2=21 a 'l "] det  [Sk  _ , (y j ;  ~ , , j . k  = l..... N (3.6) 

The  n o r m a l i z e d  wave  funct ion ,  in t e rms  of the va r i ab le  (3.3), therefore  has  
the S la te r  d e t e r m i n a n t  fo rm 

(~_____..~) ,/2 N 
I/ /0= 1- ' I  . - 2 ~ 2 /a  ,/2 [2ay~,w(yk, e )]  

�9 k= l  

x de t  [ S k _  , (y j ;  ~ - 2~-'/.~1 ~" ) . . I j ,  k = 1,.... N (3.7) 

3.2. A D e t e r m i n a n t  Formula for  the  Densi ty  Mat r ix  

The  n - b o d y  dens i ty  ma t r i x  is def ined as 

p(x, ..... x .  l x', ..... s  

- dx16~, .x;  q~o(X, ..... x . ) q J o ( X ' ,  ..... x 'u )  (3.8) 
( N - n ) !  I , - ~  

M a k i n g  the change  of  va r i ab les  (3.3) gives 

P(Y, ..... Y,,I)"~ ..... Y~,) 

1 " ~= [yj)~w(y);  e -2~'2/') w(y); e-2"2/0)] '/2 
= (2~)" ( /V--  n)t  j ' 

x I-I dytw(yt )  by,,:.; d e t [ S k _ , ( y j , ~  Jaj.k=,.....N 
l ~ n +  1 

x d e t [ S k _  l(Y), e-2=2/~)] j,~ = ,,..., u (3.9) 
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Due to the orthonormality property (3.2a), the multiple integral in (3.9) 
can be evaluated to give 

ff P()q ..... Y,,I), ..... Y',) 

= (2~)" f i  [yjyjw(yj; e -2~2/~) w(yj; e-2~2/")] 1/2 
j = l  

xdet  Sp_l(yj;e Sp_~(yk,e -2~2/") (3.10) 
I / j , k  = 1,..., n 

Furthermore, the sum in (3.10) can be evaluated by using the Christoffel- 
Darboux formula (see, e.g., ref. 11): 

N 

Z 
p = ]  

Sp_ l(Y; q) Sp_ I(Y'; q) 

( s , )  =Cu_~ SN(y;q) SN_~(y';q)- N-j(Y;q) SN(y;q) 
C N y--  y' 

(3.1 la) 

where CN is the coefficient o f y  N in SN(y; q), which from (3.1) is given by 

qJV2+ N+ I/4 

CN-- {(1 - q ) . . . ( 1 - q N ) } ' / 2  (3.11b) 

3.3. The Thermodynamic  Limit 

With the notation 

q=e -2~2/~ , y = e2~"- + ~u/~; y '=e  2~l''+~ma) (3.12) 

from (3.3), (3.10), and (3.11) we see that in the thermodynamic limit the 
density matrix is given by 

p(xl ..... x, lx'l ..... X')=det[L(xs, x'k)]j.k= 1 ...... (3.13a) 

where 

L(x, x') := (2c t ) l im  ~[yy'w(y; q) w(y'; q) ] l /2  
N~oo t 

CN- ' (SN(Y; q) SN- ~(Y'; q)-- Su-'(Y; q) SN(y'; q!) y--  y' 

(3.13b) 



Exact Crystalline Many-Body Ground State 339 

To evaluate the limit in (3.13b), we note from (3.lib) and the defini- 
tion of the Gaussian polynomial that 

1 C N q '~ q 

so from (3.1) 

Cu_ l Su(y; q) SN_ l(Y'; q) 
Cu 

q-,V ( u  I N  ] ) 
( 1 - q ) ~ ( ~ l - q  u) ,,~o v q q~2+'/z(-y)" 

( ~ o [  N]  _qU-V)q,,'-+,,/2(_y,),,) x (1 
v ~' q 

(3.15) 

where 

(q; q)~ := 1--I (1 _qt)  (3.18b) 
/ = 1  

The change of summation variable (3.17) implies a different limit 
depending on the parity of N (even or odd). This is a signature of a 
crystalline state [for N odd (even) x = 0  corresponds to a maximum 
(minimum) of the particle density] and is a feature of the exact solution of 
the classical one-dimensional one-component plasma in free boundary con- 
ditions/5~ 

From the above working we find 

(a)~/~ q-~/8 ( l (x;q) l ( -x ' ;q) - l (x ' ;q) l ( -x;q))  (3.19a) 
L(x, x') = (q; q)~ sinh o~(x- x') " 

Completing the square in v gives exponents 

(v -N/2+ 1/4-ax/2ct) 2 and ( v - N / 2 -  1/4-ax/2o:) 2 (3.16) 

for the two terms in (3.15). The next step is to change the summation 
variable 

v - [N/2] ~ v (3.17) 

where [ . ]  denotes the integer part, and to note that 

I N ]  1 (3.18a) 
v+ IN/Z] u (q;q)~ 
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where 

72_ 

I(x; q) := e z''/2 ~ ( - 1 )" q~" + 1/4 ...... /2,12 (3.19b) 
t ' =  --zr 

and 

1_ Neven (3.19c) 
Z := I N odd 

This result can be transformed to involve the parameter 

q' := e--n2a/2a2 (3.20) 

instead of q (the periodic boundary conditions results of ref. 3 involve q'). 
Using the theory of the Jacobian theta functions, "3J we obtain 

L ( x , x ' ) - ~  1 (l(x,q )(l(-.~ ,q ) - l ( x , q  ) l ( - x ;q ' !  ) ,~ 0',(o; (q') 2) ~, ~ _ - s ~ , )  

where 

(3.21a) 

( ( ~  a_~) ) [(x; q') := e-Z''/201 n + ; q' (3.21b) 

The above results relate to the bulk properties of the system. It is also 
possible to obtain explicit results for the density matrix in the edge region. 
The existence of an edge near x = +N/2q = ++_N~/a is predicted from the 
plasma interpretation of Section 2.2: the positively charged particles prefer 
the interval [ -N/2r / ,  N/2q] due to the neutralizing background in this 
interval. 

To study the system about one of these edges, say x =  -N~/a, we 
introduce the coordinates X, X': 

X=x+~N/a,  X'=x'+otN/a (3.22) 

In terms of X and X', for the limit in (3.14) we find 

L(X, X')= (q; q)~ sinh ct(X- X') 

x {F( -qme2"X; q) F( - q -  I/2eZ=X'; q) 

- F( -ql/2e2"X'; q) F( -q-I/2e2~X; q)} (3.23a) 
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where 

~- q ":z " 
F(z; q) = ,.~o (1 - qi~::~l - q") (3.23b) 

[The function F(z; q) occurs in the theory of partitions. ~2~] It is easy to 
check that (3.21) for N even (odd)is  reclaimed by making the replacements 
X v - - ~ M + x  ( M - 1 / 2 + x ) ,  X'F--- ,M+x' ( M - l / 2 + x ' ) ,  M ~ Z  +, and 
taking the limit M---, oo. 

4. FEATURES OF THE CRYSTALLINE STATE 

4.1. The Particle Density 

The particle density p(x) is the diagonal element of the one-body 
density matrix: 

p ( x ) = p ( x l x )  (4.1) 

Thus, from (3.13) and (3.21), in the bulk of the system we have 

1 0 - x ; q , ) - _ x ; q , ) _ - x ; q , ) ~ x ~ _ X , q , )  
p ( x )  = ~0'~(o; (r ~ (4.2) 

which is a periodic function of period 2cr Numerical plots show that for 
N odd (even) the density exhibits a maximum (minimum) at x =  0. 

4.2. Relationship Between the State in Free and 
Periodic Boundary Condit ions 

In this subsection, we will verify the sum rule (1.2), which relates the 
n-particle density matrix obtained using free boundary conditions to the 
n-particle density matrix in periodic boundary conditions. The density 
matrix in free boundary conditions is given by (3.21) above, while in 
periodic boundary conditions, from the results of refs. 3 and 14 we have 
that 

p ( x ,  ..... x , , Ix ' ,  ..... x;,) 

[ t d~ det[G(ax/2u + ~, ax'/2cr + r e -  ~"~/2"2)] 
ao 

where 

a l o  
G(X,X';q):-=~a 

(4.3a) 

03(2irt; q2) 
dt 03(r~X+ nirt; q) 03(nX' - rdrt; q) e2nitlx_ x') (4.3b) 
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with 

q = e ~i~ (4.3c) 

This result applies independent of the limit having been taken with N even 
or odd. 

To verify (1.2), we first note that the value of the right-hand side of 
(1.2) is independent of the values of ~, (3.19c). This follows from (3.21b) 
and the fact that 

fO ~ , , ~ , , + ~  ..... x , , + ~ l x ~ + ~  ..... x , ,+~)  

(4.4) 

Comparison of (3.13), (3.21), and (4.3) then shows that a sufficient condi- 
tion for the validity of (1.2) is 

G(ax/2oq ax'/2o~; e - ,2~/2~:) = L ( x ,  x ' )  (4.5) 

where we can choose either X= 1 or X= - 1  in (3.21b). Let us now verify 
this identity. 

To do this, we consider the integrand of (4.3b) as the integrand of a 
contour integral about the closed contour C~ + C2 + C3 + C4, where each 
Cj ( j =  1 ..... 4) is a straight line segment in the complex plane. In an 
obvious notation, these segments are [0, 1], [1, 1 -  l / r ] ,  [ 1 -  l/z, - I / z ] ,  
and [ - I / z ,  0], respectively. Let us denote the value of the integral along 
each of these contours by I~ ..... /4, respectively. Since the integrand is 
periodic of period 1, 12 and 14 cancel Furthermore, since 

it follows that 

03(z + rtz; q) = q-le-2'~i'-Ol(z; q) 

13 +13 = (1 - e  -2'~i~x- x'l/ ')  G(X,  X' ;  q) 

(4.6) 

(4.7) 

On the other hand, we can calculate the contour integral using the 
residue theorem. Inside the closed contour there are poles at 

1 1 1 3 
t . . . .  and t . . . .  (4.8) 

2 4z 2 4z 
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A straightforward calculation gives that the sum of the residues is 

1 1 --{e-~i'x-x"/'O (nX+;;q) Ot(rtX'-;;q) 2nz O'l(O; q2) \ l 

-e-3"'tx-x'v~O,(rtX-4;q) O,(rtX'+;;q) ) (4.9, 

The residue theorem then gives that the right-hand side of (4.7) is equal to 
2hi times (4.9). This gives a formula for G(X, X'; q) equivalent to (4.5) 
(with Z = -1) ,  as required. 

4.3. Perfect Screening and Second Moment  Sum Rules 

The averaged truncated two-particle distribution function 

f l/,~ 
t~r(ct) := r/ pr(s+x,s) ds (4.10) 

~0 

[q :=a/2~; recall (2.9)] satisfies a perfect screening and second moment 
sum rule [(4.18) and (4.19) below], which in turn imply a special small-k 
behavior of the structure factor 

S(k) := 1 +• e'kxpr(x) dx (4.11) 
~l d - -  o0 

[(4.20) below]. 
To understand the physical origin of this latter result, we recall that 

for one-component plasma systems, quantum or classical, consisting of 
particles of charge Q and mass m at number density t/, the collective excita- 
tions are plasma waves with angular frequency (see, e.g., ref. 15) 

r = ( - ~ )  '/" (4.12, 

Here Ca is the dimensionality-dependent constant in Poisson's equation for 
the potential ~b(x): 

V-'~b(x) = --Cd6(X) (4.13) 

In particular, from (2.7), in one dimension 

Cd = 2 (4.14) 

For the quantum mechanical one-component plasma, the energy A between 
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fundamental modes of the plasma waves, and in particular between the 
ground state and the lowest energy excitation, is therefore given by 

d =ho9 (4.15) 

On the other hand, this energy gap is given in terms of the structure 
factor by the Bijl-Feynman formula (see, e.g., ref. 16): 

(hk)2/2m 
A ( k ) ~ - -  as k--*0 (4.16) 

S(k) 

Below we use the exact result 

pr(Xl, X2) = - I G ( q x l ,  qx2; e-"/2~2)12 (4.17) 

proved in the previous subsection to verify the perfect screening and second 
moment sum rules: 

f ~  pr (x )  = -r/  (4.18) dx 
- -  o ~  

and 

f ~  1 (4.19) _ ~_ xZpr(x)  dx = - 2"~ 

By expanding the complex exponential in (4.11) we see from (4.18) and 
(4.19) that 

k 2 k 2 
S(k)  ~ 4 r l c t  (qQZ)~/z (4.20) 

where to obtain the equality we have used (2.9) with b =  1. Since in the 
original Hamiltonian (2.1) the units are such that h2/2m = 1, we see from 
the Bijl-Feynman formula (4.16) that (4.20) is precisely the behavior 
required to reproduce (4.15) [o9 in the latter formula is given by (4.12) with 
Cd given by (4.14)]. 

Let us now present the derivation of the sum rule (4.19). The deriva- 
tion of (4.18) is less complicated and will not be given. In (4.17) G is given 
by (4.3b), which allows us to write 

2 

Oa(nq(x + s) + nizt; q) 03(nrls -- nizt; q) dt 2 
• Oa(2nirt; q2) (4.21a) 
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where 

q := e ~i~ = e -~an~2 (4.21b) 

An integration by parts in (4.21a) gives 

x2or (x+s ' s )=  ~nn e2""xOOt 

(03(l tq(x+s)+~i~t;q)O3(~ls-r t i~t;q))dtZ (4.21c) 
x 03(2rti~t; qZ) " 

With (4.21c), we see from (4.10) and (4.17) that (4.19) consists of four 
integrations. We interchange the order of these integrations so that the 
integration over x is being performed first. Since 

~ ")03(rcq(s + x) + ra~t; q) 03(rcq(s + x) - ni~t'; q) dx e2ni,lx{t 
-oo 

1 
= - 6(t -- t') 03(nir(t -- t'); q2) (4.22) 

q 

we have 

( 1 ) 2 : ~ m d s I ~ d t I ~ d t ,  f ( t _ t ,  , I ~ x2:T(x)  ax = 

I O 03(rtqS -- ni~t; q) 
x -~ 03(2nirt;q2) 

( 0  03(nrlS+Tzizt';q)030ziz(t+t');q2)) 1 (4.23) 
x Ot' 03(2~izt,; q2) 

Integration over s and use of the Dirac delta function in (4.23) then gives, 
after some minor manipulation, 

( , )2 ,1  02 _ ~ ~-~ log 03(2raft; q2) dt (4.24) xZpr(x) dx= ~ 2q o 

The desired formula (4.19) now follows by evaluating (4.24) according to 
the fundamental theorem of calculus, and using the functional equation 
(4.6) to evaluate the resulting expression. 
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